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Abstract

Ultrasonic surface (Rayleigh) waves become dispersive when propagating on non-uniformly stressed media. In light
of this, the Acoustoelastic effect on their propagation in deformed but initially isotropic materials has been investigated
in the past, in order to determine the surface stress and gradients of stress with depth. An energy perturbation approach
considerably reduces the complexity in the treatment of the Acoustoelastic effect and inversion of the perturbation rela-
tion offers an advantageous route to obtaining the stress gradients. This paper presents a new mechanism for effecting
this inversion, which tries to overcome the effects of the ill-posed nature of the problem. Preliminary simulation results
for commonly occurring stress profiles are presented.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Stress states existing in materials without the presence of any external cause are called residual stresses
(James and Lu, 1996). Many common manufacturing processes induce residual stresses in materials and
machine components. The performance of materials under different operating conditions depends on the
residual stress present and their presence can have either a beneficial or harmful effect. In certain cases, like
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that of presence of a tensile surface stress, they can lead to catastrophic failure by adding to the loads to be
borne by parts and accelerating crack growth. On the other hand, compressive residual stresses (introduced
sometimes deliberately by operations like shot peening) can impede crack growth and greatly enhance the
life of components (Noyan and Cohen, 1991). Hence the measurement of residual stresses is of crucial
importance for stress analysis and component design.

In practical conditions, ultrasonic methods are attractive for non-destructive characterization of residual
stresses, because they can provide information pertaining to the interior of the material, and can be applied
to a wide range of materials (Lindgren et al., 1993). Also, they allow instrumentation that is convenient,
portable, inexpensive and free from radiation hazards (Thompson et al., 1996).

Ultrasonic surface waves can be useful when only one side of the component to be investigated is acces-
sible and when we require stress profile information. In this paper, we examine the possibility of using dis-
persion of Rayleigh surface waves for such a configuration, to obtain stress as a function of depth. Rayleigh
waves occur at the surface of a semi-infinite medium, for example, the free surface of a thick plate (a thick
plate is one in which the plate thickness is very large in comparison to the wavelength) (Rose, 1999). Since
they travel along the surface of a sample, Rayleigh waves can also be used to inspect curved surfaces and
difficult geometries, which cannot be probed otherwise.

Ultrasonic methods for stress measurement commonly rely upon the effect of pre-stress on the propaga-
tion velocity or phase of ultrasonic waves, called the ‘Acoustoelastic effect’. Traditional treatment of the
Acoustoelastic effect starts with a form of Naviers’ displacement equations of motion, containing terms
for applied initial stress. This theory was developed by Hughes and Kelly (1953), based on the theory of
finite deformations by Murnaghan (1951). This approach was first used to analyze the Acoustoelastic effect
on Rayleigh waves by Hayes and Rivlin (1961), and extended by Iwashimizu and Kobori (1978) to the gen-
eral case in which the propagation direction does not coincide with one of the principal axes of strain. It
leads to a linear relationship (generally) between velocity change and applied stress. These works restricted
themselves to the case of presence of uniform stress fields. Though Dugennoy et al. (1999) have used a sim-
ilar approach to obtain arbitrary stress profiles from measured velocity profiles, their method is restricted to
cases where the depth direction of the sample is accessible and stress is non-uniform only in that direction.
It is difficult to extend such an analysis of the Acoustoelastic effect to the general case of an arbitrary in-
homogenous beam passing through an in-homogenously stressed medium, as the calculations can get quite
complicated.

An alternative approach is to apply perturbation theory to predict the effect. Perturbation theory is con-
cerned with small changes in the solution, caused by small changes in the physical parameters of the prob-
lem (Nayfeh, 1983). It serves as a powerful tool which provides analytical approximations to solve
problems not readily attacked by direct computation (Norris and Sinha, 1995; DiPerna and Feit, 2000; Wil-
latzen, 2001). Auld (1990) first developed a perturbation formula for the elastic surface wave case. This was
applied by Tittman and Thompson (1973) to the dispersion problem and was further studied by Szabo
(1975). Richardson (1977) and Richardson and Tittman (1977) based on the work by Tittman and Thomp-
son (1973), looked at the inverse problem of obtaining material property gradients from surface wave dis-
persion. They sought to address the ill-posedness of the inverse problem by an Estimation Theory based
approach. Hirao et al. (1981) first analyzed the case of Acoustoelasticity of Rayleigh wave for the presence
of non-uniform stress state, by taking account of high order perturbations of the wave equation itself. They
provided theoretical and experimental confirmation of the anticipation that Rayleigh wave Acoustoelastic-
ity gets dispersive (that is, frequency dependent) for such cases. This approach was further extended and
generalized by Kline and Jiang (1996). Husson and Kino (1982) took a different approach to the application
of perturbation theory to the characterization of Acoustoelastic effect. This method is based on a Lagran-
gian description of the motion of particles and the use of energy perturbation methods, in which the appli-
cation of stress to a medium is regarded as a perturbation of the medium. Based on this work, later, Husson
(1985) derived an integral equation relating the change of phase of a Rayleigh wave and the applied stress.
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Ditri and Hongerholt (1996) and Ditri (1997) sought to unify the conclusions of Hirao et al. (1981) and the
results of Husson (1985) to examine the possibility of using Rayleigh wave dispersion to obtain stress profile
in initially isotropic materials. Ditri (1997) suggested that, the problem of obtaining the stress distribution
from measured values of change of phase of ultrasonic Rayleigh waves propagating in a stressed medium,
constitutes the ‘Inverse problem’. We present a new approach to achieve this inversion that addresses the ill-
posedness of the problem.

2. The forward problem

The forward model is based on the work by Husson (1985) and corrections published by Ditri and Hon-
gerholt (1996). We follow a notation similar to the one used by Ditri (1997).

A Rayleigh wave, upon propagation over a certain distance on the surface of the material, undergoes a
phase shift ¢(w). Hence an initial particle velocity v becomes ve!?). Let ¢°(w) denote the phase shift
which would have been experienced by the wave propagating on an equivalent stress free medium and
dp(w) is the phase difference (¢ — ¢°). For Rayleigh waves propagating along the a5 direction on the
free surface a; — a;y (see Fig. 1) of an initially isotropic elastic medium, the phase difference can be
expressed as:

w

d¢p(w) = ~ap /,

G(ay, w)dV (2.1)
where o denotes the circular frequency, P denotes the power flow, or the average power carried by the Ray-
leigh wave over one time period, per unit width in a direction perpendicular to the travel direction and V, a
volume enclosing the Rayleigh wave with fronts extended infinitely in the direction perpendicular to prop-
agation direction. ‘a,” denotes the depth direction. The detailed expression for P is given in Appendix A. It
is worthy to note that P is a function of density, phase velocities of the Rayleigh, transverse and longitu-
dinal waves in the unstressed medium and w. Also, P/w is a constant.

From this step, a slightly different notation than Ditri (1997) is introduced, in order to render the
expressions more compact. If b;, i € {1,2,3} are the components of the initial static displacements of
the medium (due to the applied pre-stress) and a;, i € {1,2,3} are the coordinates of a material particle
in the unstressed state, (thus, %’s form the initial deformation gradients in the medium), 4, u are the sec-
ond order (Lame), and /, m, n the third order (Murnaghan) elastic constants of the medium, the integrand
G(a,, ) is given by

0b,

_ ob, ob, by
G= aam lp] (a27 (,O) + 6612 lp2(a2= (l)) + 6[13 lpS (a27 (,O) a lp4(az, (l)) (22)

Fig. 1. The coordinate system.
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where
U (ay, 0) = {21 + D[F1(az, ) + Fy(ar, w) + F3(ay, ®)] + (A + m)F4(ay, ®) + mFs(ay, w)}
Va(az, @) = {(22 + 6p + 4m)F1(az, ©) + p[2F4(a2, ) + Fs(az, )]} (23)
¥s(az, 0) = {(24+ 6p + 4m)Fa(az, ) + p[2F4(az, ) + Fs(az, 0)]}
Valaz, 0) = {(2+2m — n)F3(az, ) + (n/2)[Fa(az, ©) + Fs(az, )]}
And F;, i€ {1,2,3,4,5} are the displacement gradients caused by the Rayleigh wave, given by:
Fi(ay, ) = o’ f;e 20" (2.4)

The constants fj; and k;, j € {1,2,3} are defined in Appendix A (Throughout this paper, summation over
repeated index is implied).

2.1. Uniaxial stress state

Eq. (2.1) has been specialized by Ditri and Hongerholt (1996) to cases of propagation of the Rayleigh
wave along and perpendicular to the applied stress, using the notation 8¢** to represent the possibly fre-
quency dependent change in phase, experienced by a Rayleigh wave propagating in the a, direction caused
by a uniaxial stress applied in the a; direction. Here, only the final results are presented, albeit in a more
compact form.

Case 1.
The Rayleigh wave propagates in the a; direction over a length Ly and has uniform fields in the «; direc-
tion. A uniaxial normal stress o33(a;), which varies only with depth a, is applied along a5 axis.

For this case, Eq. (2.1) is reduced to the form:

8" () =~25 |

where O = P/w; o;, which are functions of the Lame and Murnaghan constants alone, are given in Appen-
dix A.
Case 2.
The Rayleigh wave propagates in the a3 direction over a length L, and has uniform fields in the @, direc-
tion. A uniaxial normal stress o;(a,), which varies only with depth a, is applied along a, axis.

For this case, Eq. (2.1) reduces to the form:

5" (1) =

CUZO(i ije—2wk]-a2033 (az) da2 (25)

o]

7% 0 o’ B.fiie > 61y (az) day (2.6)

Bi, which are functions of the Lame and Murnaghan constants alone, are given in Appendix A.

2.2. Biaxial stress state

If we have two stresses a11(a») and g33(a») in the medium, these two together constitute a biaxial stress
state. Ditri (1997) has shown that because the change of phase is a linear functional of the applied stress, the
effect of biaxial stress state is the sum of the effects of each stress individually.
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The notation 8¢*# *?) is used to represent the change in phase, experienced by a Rayleigh wave prop-
agating in the a, direction caused by a biaxial stress applied with principal directions along the a4 and a,
and directions. We can therefore write:

3¢° " (w) = 8¢ () + 3¢ (w)

(2.7
3¢'V () = 8" () + 84" ()
where 3¢''(w) and 8¢'*(w) are given by Egs. (2.5) and (2.6) and
L o0
6(]5“(60) = —é wa, ,-je’z‘“k/“za”(az) da, (2.8)
0
13 _ LO - 2 —2wkjay
6(]’) ((D) = —@ () ﬁ[ﬁ/e 7 (733(612)(1612 (29)
0
Thus Eq. (2.7) becomes:
3(143) _ Ly - 2 —2wk;ay Ly = 2 —2wkjay
¢ (w)=—— o Bifie "0y (ar)da, — — w a;fie” """ 033(az) day
40 Jo 40 Jo (2.10)
Ly [ Ly [™ _ '
8¢1(1+3)(w) _ _é 0 w2ul_ Ue—Zwk,azall(az)daz _ é 0 wzﬁ,-ﬁ,-e’zwkf”zag(az)daz

3. The inverse problem
3.1. Case of uniaxial stress: proposed new approach

Let us first examine the case of presence of a uniaxial stress for inversion. We can write a generic expres-
sion for Egs. (2.6) and (2.7) as shown below:

Ly [~
S(@) =35 |
We assume that the difference of phase is measurable by experimentation, and that we can fit a continuous
function d¢(w) to the data. Then the problem of inversion is actually the problem of finding a solution to
Eq. (3.1). We note, that Eq. (3.1) is an integral equation, where the unknown quantity of interest, o(z) oc-
curs within the integral sign. Specifically, it is a linear Fredholm equation of the first kind with the non-sym-
metric kernel

a)zyiﬁje_z“’kfza(z) dz (3.1)

Kh(0.2) = = g5 ornfye (3.2)
For such kernels, Fredholm equations of the first kind often tend to be ill-posed. The conditions for a prob-
lem to be well posed are that it should have a solution, which is at the same time unique and stable. We
cannot, in general, guarantee these conditions for any arbitrary function d¢(w) for the kind of kernel pro-
vided by Eq. (3.2). The theory for existence and uniqueness of stable solutions for Fredholm equation of the
first kind imposes restrictions on the kernel and the non-homogenous term (which may not, in general, be
satisfied). Even if it is known that a solution does exist, the usual iterative methods (known extensively in
case of integral equations of the second kind) to reconstruct it are not available. This is due to the absence
of the solution a4(z) outside the integral of Eq. (3.1).
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These features of the Fredholm integral equation of the first kind are in contrast to say the Volterra
equation of the first kind, which definitely pose lesser problems. Again, in certain common instances of
physical problems, the Volterra integral equations of the first kind, permit a conversion to the correspond-
ing equation of the second kind, in which case, the solution is all the more definite and easier to obtain.

It is known that boundary value problems associated with differential equations give rise to Fred-
holm integral equations and that initial value problems associated with differential equations lead to
Volterra integral equations. Therefore a reformulation of our problem as an initial value problem pro-
vides the advantageous prospect of dealing with the solution of a Volterra equation. This is the basis
for the procedure attempted in this work, where this conversion into a Volterra equation is sought to
be achieved. Looking at the problem from this standpoint, crucial use is made of the commonly known
fact that the Rayleigh waves diminish rapidly beyond a depth equaling approximately one wavelength
(represented by A). Therefore along the depth direction, ‘infinity’ can be taken to extend to a few wave-
lengths, say ~ni (n being a finite number). Restricting the upper limit of integration in Eq. (3.1) to this
value:

Eq. (3.1) becomes:

Ly [, —dwkjz
dp(w) =—7= | opfe " o(z)dz (3.3)
40 Jo
Making a substitution s = nA and recognizing that, 1 = 2rc/w (where ‘¢’ is the Rayleigh wave velocity in the
medium) Eq. (3.3) becomes:

L S . —2(2men/s)kjz
dp(w) = d¢p(2nen/s) = F(s) = —Eo(ncn)z/ /’fjesiza(z)dz (3.4)
0
Letting Cj; = —% (mcn)’f;; and k; = (2mcn)k; we obtain:
S8 —21;_,z/s
Pl = [ TS e (3.5)
0

Eq. (3.4) is a Volterra integral equation of the first kind with the unknown function ¢(z) and the (non-sym-
metric) kernel:

721:;,'2/3

o y,Cije

Ki,(s,z) 5 (3.6)

S
Thus we have converted the Fredholm equation of the first kind given by Eq. (3.1) into a Volterra equation
of the first kind (3.5).
Also, we observe, that

Vici‘eizl;j
Kys.5) =B 4 g (3.7)

And also that the derivative £K3(s,z) exists:

3 Cif(—2k;)e 2/
3

(3.8)

0 1
a—ZKV(s,z) = g

Hence, we can attempt a further conversion of this equation into a Volterra equation of the second kind
(Tricomi, 1957). This is achieved by setting

/0 ' o(z)dz = E(s) (3.9)

And integrating Eq. (3.5) by parts



P. Rajagopal et al. | International Journal of Solids and Structures 42 (2005) 789-803 795

C;i —2kjz/s = Sy Cyi _2]} —2kjz/s
A} 0 S
z=0
That is,
G X Hi‘efﬂ.cj-z/x
F(s) = S E(s) +/0 T () d (3.11)
where
G=7Ce™ and Hy,=yCy(2k) = 2,C;k; (3.12)
Rearranging terms in Eq. (3.11):
S2 1 s H”efyzl-z/s
E(s)==F(s) — = - F 1
O =gFO -5 [ P (313)
Eq. (3.13) is a Volterra integral equation of the second kind, with the non-homogenous term
&2
J(s) ==F(s) (3.14)
G
And the kernel
1 Hi.eleé,-z/s
K{}(s,z):—a% (3.15)

Eq. (3.13) can now be solved by standard available analytical methods. The general conditions for existence
of a unique and bounded solution of a Volterra integral equation (Jerry,1999) of the form
u(x) = f(x) + 4[> K(x,)u(¢)d on an interval [a,b] are that the function f{x) be integrable on the interval
and that the kernel K(x, &) be integrable in the triangle a < x < b, a < & < x.

In the case of Eq. (3.13), since we have assumed that we can obtain a continuous function d¢(w) (and
hence a continuous and integrable function F{(s), since continuity implies integrability) on [0, s].

It can be observed that the kernel Ky (s,z) = — & w is continuous in ‘z” and ‘s’ on any triangle,
0 < s < b,0 < z < s. Therefore one can always guarantee a unique and bounded solution, for any func-
tion continuous d¢(w), and by extension, for any kind of continuous input stress function.

Often, analytical procedures to obtain the solution become cumbersome. We can then attempt numerical

methods, by approximating the integral in Eq. (3.13) as a sum of terms using quadrature rules:
E(s) =J(s) + > K{(s,2,)E(z,)w(z,) (3.16)
q=0

Since we use either z or s as the independent variable for the solution E, we can call 5o = zo(=0), s = 5, = z,
(where z,, is the end point we chose for z) and s, = sy + pAz = 2y + pAz, that is, s, = z,. The value of the
kernel Ky (s,, t,) vanishes for 7, > s,, as the integration ends at ¢, < s, Therefore, we will have the system
of n+ 1 equations (Writing: Ky (s, #,) = K, ¢ < p, J(s,) = J,, w(z,) = w, and E(s,) = E,)



796 P. Rajagopal et al. | International Journal of Solids and Structures 42 (2005) 789-803

Ey=Jy

» (3.17)
E,=J,+Y KyEw, (p=12,....n)

q=0
Rearranging terms, transferring terms involving the solution E, to the left side of (3.17) leaving the non-
homogenous part J, on the right side, we obtain the following (lower) triangular system of equations:
=J,

-1 3.18
Ky w,E,+ (1 = Kywy)E, =J, (p=1,2,...,n) (3.18)

S

bS]

Il
=}

q
The set of equations (3.18) can be written in a matrix form:
[K{E} = {F} (3.19)

where K is the (n + 1) X (n + 1) matrix of coefficients of the system of equations (3.18), £ = (E,) is the col-
umn matrix of sample solutions, and F = (F),) is the column matrix of sample values of the non-homoge-
nous part.

Eq. (3.19) yields the function E and subsequently, we can obtain the stress function o(z) from Eq. (3.9).
The great advantage of Volterra equations of the second kind is that such a numerical approximation re-
sults in the coefficient matrix of the linear system of equations so obtained, being a (lower) triangular ma-
trix. This is because of the variable upper limit of integration in the Volterra equation (and therefore, the
kernel K(x,t) = 0 for ¢ > x). A system of linear equations with such a natural triangular coefficient matrix is
easy to solve. This is in sharp contrast to the square system of equations which result from numerical reduc-
tion of the Fredholm integral equation.

Forward
C—— > model

l i

Multiply
Inversion By $%G

U 1l

Compare _ Inverse Obtain
o(x) Model C: J(s)

Fig. 2. Simulation methodology.
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Fig. 4. Simulation result for input stress of form o = Az*> + Bz + C.
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3.2. Simulations results

Preliminary simulation results are presented here, to demonstrate the inversion. A numerical reduction
as described in Section 3.1 has been attempted, based on Simpsons’s rule. The trapezoidal rule is used as a
starting procedure at the second iteration. The procedure adopted for simulations is as follows (see Fig. 2):
the applied pre-stress is assumed to be a known function of depth. The forward model is then used to obtain
the non-homogenous term in Eq. (3.13). With this as the input, the (approximate) solution is calculated and
compared with the applied stress. Fig. 3 shows the result for input stress which varies linearly with depth
and Fig. 4 shows the result for a second order variation of stress with depth. It is to be noted that here, the
frequency is effectively sidestepped because throughout, the calculations are in the ‘s’ plane.

3.3. Case of biaxial stress: proposed new approach

We rewrite the set of equations (2.10):

6¢3<1+3>(w) _ _ =0 wzﬁifije_z“’kf"zo'” (z)dz — =0 wzai. Ue—zwk,uzg33 (z)dz
40 Jo 40 Jo
e . (3.20)
S 1(143) — 0 2 ¢ a—20kja dZ——O 20 £ a—20ka d
¢ (CL)) 4Q o = lje Jll(z) 4Q o () :Bzflje 0_33(2) z

Assuming again that 3¢*' " ¥(w) and 8¢ ' ¥ ¥(w) are measurable and that we can fit continuous func-
tions to them, the inverse problem now, is to solve for ¢;(z) and o33(z) from the set of equations (3.20).
Adopting the same procedure as in Section (3.1), the set of equations (3.20) can be written as:

G s H?lefﬂz/z/s G s H}lefﬂcjz/s
F3<1+3)(S) :s_;Ell(S)+/ jiE”(Z)dZF(S)‘FS_;EB(S)—F/ 17E33(Z)d2
0

¢ 0o ¥ 321
Gl s Hillefﬂc/z/s G2 s H?lefﬂc,z/s ( ' )
F1(1+3)(S) = STE“(S) + /0 jTE“(Z) dZF(S) +STE33(S) +/0 ITEB(Z)dZ
where
Gl = O{,‘C[je_y}f and Hllj = 2OC’CUI;I7 G2 = ﬁicije_y;/ and lej = 2ﬁlCU];/ and
L
Cy = —EO (men)’f;; as in the previous section. (3.22)

A numerical approximation of integration in the set of equations (3.21) can considerably reduce the com-
plexity in solving for o1;(z) and a35(z). To facilitate this, we rewrite (3.21):

1 s er’zl}fz/“ 1 s H}efﬂ{fz/s
PE(5) = Gy [ Eni(s) +6/ T En(2)dz | + Gy | Exs(s) +E/ T Ey(z)de
0 0

2 § 1 §

1 s H}Ciz]}ﬂ/s 1 s H%.efﬂcjz/s
S2F1(l+3)(S) = G1 Ell(S) + — /O ]TEU(Z) dZ -+ Gz E33(S) +62 /0 jTEB(Z) dZ

(3.23)

Now the numerical reduction yields:



P. Rajagopal et al. | International Journal of Solids and Structures 42 (2005) 789-803 799

sSSP = GKLE) + GIK( Exs
(3.24)
QPR3 — G\ K\E\ + GoKE

12 T B T 4
: : &
] 55 {‘}@
10 M - oo R i
e, | 6
o L ] Bt Sty L2
o S| = ; \
L B DY) S N S
= #, = S
o e o Co®
= & S Y L L LT T P
e E o
= N L P
| N v ] w PN
P g s R4S
= : = &
[¥a] ' V] '
] O S A < S G
z ¢ o
: 4 2fennnogeens fomeeeesnsoee
] S & & :
* Inversion 15F-%----T" v Inversion T
¢ Input: Axis 1 @G & Input: Axis 2
_2 1 1 1
0 0.5 1 0 05 1
Depth (m) x 10° Depth (m) x 107

Fig. 5. Simulation result for biaxial stress of form ¢ = (—4)z> 4+ Bz along axis 1 and ¢ = Cz + D along axis 2. (4, B, C, D positive.)

12 T 2 I
* Inversion * Inversion
& Input: Axis 1 19F----1 & Input: Axis 2 |-~
10 (&0~ FRREEREEEEE :
S, | ) EOSESRS SN <
= Y, | "o : ¢
P | Vgt -ommmmommeeeg A TS S P
T LR L =1 IR LA
R e 5 e
£ P - fooeee oo
ol . ¢ e Poe
@ ¢ R eE benngpmnnnnnned
& = ¢ & Lo
B L8] {Jic] E—— L S—
: ¢ 0
; ¢ 1.2fnenmnnees T
] ) ¢ 2
H 1T p-mmmmmyg ‘s RREET EEEEEEEEREERER
: IR
0 05 . 1 0 05 . 1
Depth (m) x 10° Depth (m) x 10°

Fig. 6. Simulation result for biaxial stress of form ¢ = (—A4)z> + Bz along axis 1 and ¢ = Cz> + Dz along axis 2. (4, B,C, D positive.)
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where P! ¥ and F'' * ¥ are column matrices containing sample values of F°' ¥ 3(5) and F'' *3(y)
respectively, E1; and E3; are column matrices containing sample values of Ejj(s) and Es;(s) respectively,
and K; and K, are coefficient matrices as defined in Eq. (3.19), for specific values of H; :Hl.lj and
Hj= Hfj respectively. (3.24) further yields,

G,K, GK, Ey SPFRI3)

(3.25)

GiK, G)K, E3 PRI

We note that G| K, # G»K, and therefore we can solve (3.25) successfully to obtain unique solutions E;; and
Es3, and subsequently, the stress functions a11(z) and ¢ 33(z) from Eq. (3.9).

3.4. Simulations results

Again, present preliminary simulation results are presented for the case of presence of a biaxial stress
state. The numerical procedure adopted and the simulation methodology is same as described in Section
3.2. Fig. 5 shows simulation result for a biaxial stress state where along one axis, we have a quadratic var-
iation of stress with depth and along the other axis we have a linear variation of stress with depth. Fig. 6
shows simulation result for a biaxial stress state where we have a quadratic variation of stress with depth
along both the axes. Again, all calculations are in the ‘s’ plane.

4. Discussion
4.1. Effect on ill-posedness

The complex physical nature behind the propagation of Rayleigh surface waves manifests itself in the
forward model being Fredholm integral equation of the first kind (3.1). This makes the direct inversion
of this equation an ill-posed problem. The inversion method proposed in this paper is based upon the con-
version of this equation into a Volterra integral equation of the second kind (3.13). It is a known fact in
literature (Jerry, 1999) that such equations are less prone to ill-posedness; a mathematical analysis of these
equations will reveal the salutary effect of this process.

In Eq. (3.1) the integration over the sought solution, ¢(z) is a smoothing process. This is further aided by
the nicely behaved kernel, K.(w, z). Therefore information regarding the variations in o(z) tends to be sup-
pressed in d¢(w), the resultant of the integration. Hence, given a function d¢(w), we cannot in general, be
assured of an answer in search for g(z). This is at the root of how ill-posedness manifests in the Fredholm
formulation.

The improvement achieved by the proposed method can be perceived through (3.11). Here, the presence
of an additional term containing E(z) (which in effect, contains all the information of ¢(z)) outside the inte-
gral operation, ensures the preservation of full information regarding o(z) in F(s). This is how the Volterra
formulation is less prone to ill-posedness.

4.2. The choice of a suitable value for ‘w

It must be noted that, apart from the condition that it must be a finite number, the issue of the value
for ‘n’ does not figure up to the point where the conversion of integral equation type is effected. Until
here, its role is only so far as to make the upper limit of integration dependent upon frequency (see
(3.1)—(3.3)) so that a Volterra equation results from a Fredholm equation. But the matrix K which is in-
verted and applied to the function F to obtain the stress function E in (3.19) is dependent on the value of
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‘w’. In this matrix ‘n” appears twice in the denominator, outside and within a negative exponent; hence the
lower the value of ‘n’ the better, so that the matrix K remains numerically invertible. The range of fre-
quencies used is 176 MHz to 17.6 GHz, corresponding to the depths of 1-100 pm, and were investigated
in the simulations. However, this is by-passed during simulations as we are dealing in ‘s’ space, the ‘wave-
length space’. The wavelength is roughly the penetration depth, so the frequency must be such that the
wavelength offers the penetration we require. The Rayleigh wave is known to vanish (Kline et al.,
1996; Lindgren et al., 1993) beyond approximately 1.2 times its wavelength so the lowest value that
can be chosen for ‘n’ is 1.2. The value of n between 1 and 1.4 were tested and the inversion was found
to be stable.

4.3. Route to the equation of second kind

We could also have arrived at the Volterra equation of the second kind, by an alternative approach. This
would have involved a partial differentiation of F(s) in Eq. (3.5) with respect to ‘s’ and usage of the Leibnitz
formula,

dp do

d Bx) B B(x) OF (x,y)
dx /ac(x) Flx,y)dy = /m(x) O dY+F(x7ﬁ(x))a — F(x,a(x)) o @4.1)

But the method proposed in this work has its advantages. First, the loss of information due to differenti-
ation (whereby a constant term, if present, vanishes) is prevented. Further, the possible magnification of
errors in F(s) is avoided.

4.4. Discretization procedure

In this work, a method based upon quadrature rules was used to discretize the integral in Eq. (3.13), to
demonstrate the inversion. However, such a procedure is not considered ideal, because of their requirement
of a suitable ‘starting procedure’ and possible propensity to amplification of noise. Self starting block meth-
ods such as the Runge-Kutta method (Delves and Mohammed, 1985) are suggested as basis for an
alternative.
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Appendix A

The power flow ‘P’ occurring in Eq. (2.1) is given by:

_op Vo [V R (Ka/VD) T K (K3/V) + KK

P
2 2k ks + ki 2k

With the quantities
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P (1 1)0 L (1 1>' o k2
AN A AN - 7 A GV 7} W A W 7o)

where Vy, Vs and V3, the phase velocities of the Rayleigh, transverse and longitudinal waves respectively in
the unstressed medium. py denotes the constant density of the medium before application of the static initial
deformation.

The 15 constants f;, i € {1,2,3,4,5}, j € {1,2,3} occurring in Eq. (2.4) are:

fu=k/Vo)s fro=(Ka/Vo)s fin = 2kiKa/ V5

fa =1 [o=Kifa; [n=-2Kifn

fu==2f1; [an=hkK:Ki/ks [33=—[Ks+hkKs/k]f5

fa= V) kY fo=K3/Ve+ (kK fay = —2[Ka/ Vi + (K2kiKy)]

fs1 =211 [so=hkEKafsi/ks; [s3=—[kKs/ks + Kolfsi
The constants o; (i € {1,2,3,4,5}) appearing in Eq. (2.5) are given by:

1 AQ2A + 6+ 4m)
0”3)»—}—2’[,{{)”4»21 —2’u
o U [ G @A but dm)
34+ 2u U
1 A(A=+2m —n)
= A2l ———
“3 3;L+2u{ ATy }
1 A2u—n/2)
= 2 S Sl R
0y 324’2#{324_ n—+m Z,u
- M= n/2)
065—3)L+2M{)v—|—u+m— 2u
The constants f; appearing in Eq. (2.6) are:
Br=B=n
1 (24 W) (2 + 2m —n)
ﬁ33i+2u{}v+2l .
| A+ wn
ﬁ4_ﬁ5_3z+2u{’" S }
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