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Abstract

Ultrasonic surface (Rayleigh) waves become dispersive when propagating on non-uniformly stressed media. In light
of this, the Acoustoelastic effect on their propagation in deformed but initially isotropic materials has been investigated
in the past, in order to determine the surface stress and gradients of stress with depth. An energy perturbation approach
considerably reduces the complexity in the treatment of the Acoustoelastic effect and inversion of the perturbation rela-
tion offers an advantageous route to obtaining the stress gradients. This paper presents a new mechanism for effecting
this inversion, which tries to overcome the effects of the ill-posed nature of the problem. Preliminary simulation results
for commonly occurring stress profiles are presented.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Stress states existing in materials without the presence of any external cause are called residual stresses
(James and Lu, 1996). Many common manufacturing processes induce residual stresses in materials and
machine components. The performance of materials under different operating conditions depends on the
residual stress present and their presence can have either a beneficial or harmful effect. In certain cases, like
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that of presence of a tensile surface stress, they can lead to catastrophic failure by adding to the loads to be
borne by parts and accelerating crack growth. On the other hand, compressive residual stresses (introduced
sometimes deliberately by operations like shot peening) can impede crack growth and greatly enhance the
life of components (Noyan and Cohen, 1991). Hence the measurement of residual stresses is of crucial
importance for stress analysis and component design.
In practical conditions, ultrasonic methods are attractive for non-destructive characterization of residual

stresses, because they can provide information pertaining to the interior of the material, and can be applied
to a wide range of materials (Lindgren et al., 1993). Also, they allow instrumentation that is convenient,
portable, inexpensive and free from radiation hazards (Thompson et al., 1996).
Ultrasonic surface waves can be useful when only one side of the component to be investigated is acces-

sible and when we require stress profile information. In this paper, we examine the possibility of using dis-
persion of Rayleigh surface waves for such a configuration, to obtain stress as a function of depth. Rayleigh
waves occur at the surface of a semi-infinite medium, for example, the free surface of a thick plate (a thick
plate is one in which the plate thickness is very large in comparison to the wavelength) (Rose, 1999). Since
they travel along the surface of a sample, Rayleigh waves can also be used to inspect curved surfaces and
difficult geometries, which cannot be probed otherwise.
Ultrasonic methods for stress measurement commonly rely upon the effect of pre-stress on the propaga-

tion velocity or phase of ultrasonic waves, called the �Acoustoelastic effect�. Traditional treatment of the
Acoustoelastic effect starts with a form of Naviers� displacement equations of motion, containing terms
for applied initial stress. This theory was developed by Hughes and Kelly (1953), based on the theory of
finite deformations by Murnaghan (1951). This approach was first used to analyze the Acoustoelastic effect
on Rayleigh waves by Hayes and Rivlin (1961), and extended by Iwashimizu and Kobori (1978) to the gen-
eral case in which the propagation direction does not coincide with one of the principal axes of strain. It
leads to a linear relationship (generally) between velocity change and applied stress. These works restricted
themselves to the case of presence of uniform stress fields. Though Duqennoy et al. (1999) have used a sim-
ilar approach to obtain arbitrary stress profiles from measured velocity profiles, their method is restricted to
cases where the depth direction of the sample is accessible and stress is non-uniform only in that direction.
It is difficult to extend such an analysis of the Acoustoelastic effect to the general case of an arbitrary in-
homogenous beam passing through an in-homogenously stressed medium, as the calculations can get quite
complicated.
An alternative approach is to apply perturbation theory to predict the effect. Perturbation theory is con-

cerned with small changes in the solution, caused by small changes in the physical parameters of the prob-
lem (Nayfeh, 1983). It serves as a powerful tool which provides analytical approximations to solve
problems not readily attacked by direct computation (Norris and Sinha, 1995; DiPerna and Feit, 2000; Wil-
latzen, 2001). Auld (1990) first developed a perturbation formula for the elastic surface wave case. This was
applied by Tittman and Thompson (1973) to the dispersion problem and was further studied by Szabo
(1975). Richardson (1977) and Richardson and Tittman (1977) based on the work by Tittman and Thomp-
son (1973), looked at the inverse problem of obtaining material property gradients from surface wave dis-
persion. They sought to address the ill-posedness of the inverse problem by an Estimation Theory based
approach. Hirao et al. (1981) first analyzed the case of Acoustoelasticity of Rayleigh wave for the presence
of non-uniform stress state, by taking account of high order perturbations of the wave equation itself. They
provided theoretical and experimental confirmation of the anticipation that Rayleigh wave Acoustoelastic-
ity gets dispersive (that is, frequency dependent) for such cases. This approach was further extended and
generalized by Kline and Jiang (1996). Husson and Kino (1982) took a different approach to the application
of perturbation theory to the characterization of Acoustoelastic effect. This method is based on a Lagran-
gian description of the motion of particles and the use of energy perturbation methods, in which the appli-
cation of stress to a medium is regarded as a perturbation of the medium. Based on this work, later, Husson
(1985) derived an integral equation relating the change of phase of a Rayleigh wave and the applied stress.
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Ditri and Hongerholt (1996) and Ditri (1997) sought to unify the conclusions of Hirao et al. (1981) and the
results of Husson (1985) to examine the possibility of using Rayleigh wave dispersion to obtain stress profile
in initially isotropic materials. Ditri (1997) suggested that, the problem of obtaining the stress distribution
from measured values of change of phase of ultrasonic Rayleigh waves propagating in a stressed medium,
constitutes the �Inverse problem�. We present a new approach to achieve this inversion that addresses the ill-
posedness of the problem.
2. The forward problem

The forward model is based on the work by Husson (1985) and corrections published by Ditri and Hon-
gerholt (1996). We follow a notation similar to the one used by Ditri (1997).
A Rayleigh wave, upon propagation over a certain distance on the surface of the material, undergoes a

phase shift /(x). Hence an initial particle velocity v becomes ve(i/). Let /0(x) denote the phase shift
which would have been experienced by the wave propagating on an equivalent stress free medium and
d/(x) is the phase difference (/ � /0). For Rayleigh waves propagating along the a3 direction on the
free surface a1 � a3 (see Fig. 1) of an initially isotropic elastic medium, the phase difference can be
expressed as:
d/ðxÞ ¼ � x
4P

Z
V
Gða2;xÞdV ð2:1Þ
where x denotes the circular frequency, P denotes the power flow, or the average power carried by the Ray-
leigh wave over one time period, per unit width in a direction perpendicular to the travel direction and V, a
volume enclosing the Rayleigh wave with fronts extended infinitely in the direction perpendicular to prop-
agation direction. �a2� denotes the depth direction. The detailed expression for P is given in Appendix A. It
is worthy to note that P is a function of density, phase velocities of the Rayleigh, transverse and longitu-
dinal waves in the unstressed medium and x. Also, P/x is a constant.
From this step, a slightly different notation than Ditri (1997) is introduced, in order to render the

expressions more compact. If bi, i 2 {1,2,3} are the components of the initial static displacements of
the medium (due to the applied pre-stress) and ai, i 2 {1,2,3} are the coordinates of a material particle
in the unstressed state, (thus, ob

oa�s form the initial deformation gradients in the medium), k, l are the sec-
ond order (Lame), and l, m, n the third order (Murnaghan) elastic constants of the medium, the integrand
G(a2,x) is given by
G ¼ obm
oam

w1ða2;xÞ þ ob2
oa2

w2ða2;xÞ þ ob3
oa3

w3ða2;xÞ � ob1
oa1

w4ða2;xÞ ð2:2Þ
Fig. 1. The coordinate system.
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where
w1ða2;xÞ ¼ fð2lþ kÞ½F 1ða2;xÞ þ F 2ða2;xÞ þ F 3ða2;xÞ	 þ ðk þ mÞF 4ða2;xÞ þ mF 5ða2;xÞg
w2ða2;xÞ ¼ fð2k þ 6l þ 4mÞF 1ða2;xÞ þ l½2F 4ða2;xÞ þ F 5ða2;xÞ	g
w3ða2;xÞ ¼ fð2k þ 6l þ 4mÞF 2ða2;xÞ þ l½2F 4ða2;xÞ þ F 5ða2;xÞ	g
w4ða2;xÞ ¼ fðk þ 2m� nÞF 3ða2;xÞ þ ðn=2Þ½F 4ða2;xÞ þ F 5ða2;xÞ	g

ð2:3Þ
And Fi, i 2 {1,2,3,4,5} are the displacement gradients caused by the Rayleigh wave, given by:
F iða2;xÞ ¼ x2fije�2xkja2 ð2:4Þ
The constants fij and kj, j 2 {1,2,3} are defined in Appendix A (Throughout this paper, summation over
repeated index is implied).

2.1. Uniaxial stress state

Eq. (2.1) has been specialized by Ditri and Hongerholt (1996) to cases of propagation of the Rayleigh
wave along and perpendicular to the applied stress, using the notation d/ab to represent the possibly fre-
quency dependent change in phase, experienced by a Rayleigh wave propagating in the aa direction caused
by a uniaxial stress applied in the ab direction. Here, only the final results are presented, albeit in a more
compact form.

Case 1.

The Rayleigh wave propagates in the a3 direction over a length L0 and has uniform fields in the a1 direc-
tion. A uniaxial normal stress r33(a2), which varies only with depth a2 is applied along a3 axis.
For this case, Eq. (2.1) is reduced to the form:
d/33ðxÞ ¼ � L0
4Q

Z 1

0

x2aifije�2xkja2r33ða2Þda2 ð2:5Þ
where Q = P/x; ai, which are functions of the Lame and Murnaghan constants alone, are given in Appen-
dix A.
Case 2.

The Rayleigh wave propagates in the a3 direction over a length L0 and has uniform fields in the a1 direc-
tion. A uniaxial normal stress r11(a2), which varies only with depth a2 is applied along a1 axis.
For this case, Eq. (2.1) reduces to the form:
d/31ðxÞ ¼ � L0
4Q

Z 1

0

x2bifije
�2xkja2r11ða2Þda2 ð2:6Þ
bi, which are functions of the Lame and Murnaghan constants alone, are given in Appendix A.

2.2. Biaxial stress state

If we have two stresses r11(a2) and r33(a2) in the medium, these two together constitute a biaxial stress
state. Ditri (1997) has shown that because the change of phase is a linear functional of the applied stress, the
effect of biaxial stress state is the sum of the effects of each stress individually.
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The notation d/a(b + c) is used to represent the change in phase, experienced by a Rayleigh wave prop-
agating in the aa direction caused by a biaxial stress applied with principal directions along the ab and ac
and directions. We can therefore write:
d/3ð1þ3ÞðxÞ ¼ d/31ðxÞ þ d/33ðxÞ

d/1ð1þ3ÞðxÞ ¼ d/11ðxÞ þ d/13ðxÞ
ð2:7Þ
where d/11(x) and d/13(x) are given by Eqs. (2.5) and (2.6) and
d/11ðxÞ ¼ � L0
4Q

Z 1

0

x2aifije�2xkja2r11ða2Þda2 ð2:8Þ

d/13ðxÞ ¼ � L0
4Q

Z 1

0

x2bifije
�2xkja2r33ða2Þda2 ð2:9Þ
Thus Eq. (2.7) becomes:
d/3ð1þ3ÞðxÞ ¼ � L0
4Q

Z 1

0

x2bifije
�2xkja2r11ða2Þda2 �

L0
4Q

Z 1

0

x2aifije�2xkja2r33ða2Þda2

d/1ð1þ3ÞðxÞ ¼ � L0
4Q

Z 1

0

x2aifije�2xkja2r11ða2Þda2 �
L0
4Q

Z 1

0

x2bifije
�2xkja2r33ða2Þda2

ð2:10Þ
3. The inverse problem

3.1. Case of uniaxial stress: proposed new approach

Let us first examine the case of presence of a uniaxial stress for inversion. We can write a generic expres-
sion for Eqs. (2.6) and (2.7) as shown below:
d/ðxÞ ¼ � L0
4Q

Z 1

0

x2cifije
�2xkjzrðzÞdz ð3:1Þ
We assume that the difference of phase is measurable by experimentation, and that we can fit a continuous
function d/(x) to the data. Then the problem of inversion is actually the problem of finding a solution to
Eq. (3.1). We note, that Eq. (3.1) is an integral equation, where the unknown quantity of interest, r(z) oc-
curs within the integral sign. Specifically, it is a linear Fredholm equation of the first kind with the non-sym-
metric kernel
KIFðx; zÞ ¼ � L0
4Q

x2cifije
�2xkjz ð3:2Þ
For such kernels, Fredholm equations of the first kind often tend to be ill-posed. The conditions for a prob-
lem to be well posed are that it should have a solution, which is at the same time unique and stable. We
cannot, in general, guarantee these conditions for any arbitrary function d/(x) for the kind of kernel pro-
vided by Eq. (3.2). The theory for existence and uniqueness of stable solutions for Fredholm equation of the
first kind imposes restrictions on the kernel and the non-homogenous term (which may not, in general, be
satisfied). Even if it is known that a solution does exist, the usual iterative methods (known extensively in
case of integral equations of the second kind) to reconstruct it are not available. This is due to the absence
of the solution r(z) outside the integral of Eq. (3.1).
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These features of the Fredholm integral equation of the first kind are in contrast to say the Volterra
equation of the first kind, which definitely pose lesser problems. Again, in certain common instances of
physical problems, the Volterra integral equations of the first kind, permit a conversion to the correspond-
ing equation of the second kind, in which case, the solution is all the more definite and easier to obtain.
It is known that boundary value problems associated with differential equations give rise to Fred-

holm integral equations and that initial value problems associated with differential equations lead to
Volterra integral equations. Therefore a reformulation of our problem as an initial value problem pro-
vides the advantageous prospect of dealing with the solution of a Volterra equation. This is the basis
for the procedure attempted in this work, where this conversion into a Volterra equation is sought to
be achieved. Looking at the problem from this standpoint, crucial use is made of the commonly known
fact that the Rayleigh waves diminish rapidly beyond a depth equaling approximately one wavelength
(represented by k). Therefore along the depth direction, �infinity� can be taken to extend to a few wave-
lengths, say �nk (n being a finite number). Restricting the upper limit of integration in Eq. (3.1) to this
value:
Eq. (3.1) becomes:
d/ðxÞ ¼ � L0
4Q

Z nk

0

x2cifije
�2xkjzrðzÞdz ð3:3Þ
Making a substitution s = nk and recognizing that, k = 2pc/x (where �c� is the Rayleigh wave velocity in the
medium) Eq. (3.3) becomes:
d/ðxÞ ¼ d/ð2pcn=sÞ ¼ F ðsÞ ¼ � L0
Q
ðpcnÞ2

Z s

0

cifije
�2ð2pcn=sÞkjz

s2
rðzÞdz ð3:4Þ
Letting Cij ¼ � L0
Q ðpcnÞ2fij and ~kj ¼ ð2pcnÞkj we obtain:
F ðsÞ ¼
Z s

0

ciCije
�2~kjz=s

s2
rðzÞdz ð3:5Þ
Eq. (3.4) is a Volterra integral equation of the first kind with the unknown function r(z) and the (non-sym-
metric) kernel:
KIVðs; zÞ ¼
ciCije

�2~kjz=s

s2
ð3:6Þ
Thus we have converted the Fredholm equation of the first kind given by Eq. (3.1) into a Volterra equation
of the first kind (3.5).
Also, we observe, that
KIVðs; sÞ ¼
ciCije

�2~kj

s2
6¼ 0 ð3:7Þ
And also that the derivative o
oz K

I
Vðs; zÞ exists:
o

oz
KIVðs; zÞ ¼

ciCijð�2~kjÞe�2~kjz=s
s3

ð3:8Þ
Hence, we can attempt a further conversion of this equation into a Volterra equation of the second kind
(Tricomi, 1957). This is achieved by setting
Z s

0

rðzÞdz ¼ EðsÞ ð3:9Þ
And integrating Eq. (3.5) by parts
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F ðsÞ ¼ ciCije
�2~kjz=s

s2
EðzÞ

" #z¼s

z¼0

�
Z s

0

ciCijð�2~kjÞe�2~kjz=s
s3

EðzÞdz ð3:10Þ
That is,
F ðsÞ ¼ G
s2
EðsÞ þ

Z s

0

Hije
�2~kjz=s

s3
EðzÞdz ð3:11Þ
where
G ¼ ciCije
�2~kj and Hij ¼ ciCijð2~kjÞ ¼ 2ciCij

~kj ð3:12Þ
Rearranging terms in Eq. (3.11):
EðsÞ ¼ s2

G
F ðsÞ � 1

G

Z s

0

Hije
�2~kjz=s

s
EðzÞdz ð3:13Þ
Eq. (3.13) is a Volterra integral equation of the second kind, with the non-homogenous term
JðsÞ ¼ s2

G
F ðsÞ ð3:14Þ
And the kernel
KIIVðs; zÞ ¼ � 1
G

Hije
�2~kjz=s

s
ð3:15Þ
Eq. (3.13) can now be solved by standard available analytical methods. The general conditions for existence
of a unique and bounded solution of a Volterra integral equation (Jerry, 1999) of the form
uðxÞ ¼ f ðxÞ þ k

R x
a Kðx; nÞuðnÞdn on an interval [a,b] are that the function f(x) be integrable on the interval

and that the kernel K(x,n) be integrable in the triangle a 6 x 6 b, a 6 n 6 x.
In the case of Eq. (3.13), since we have assumed that we can obtain a continuous function d/(x) (and

hence a continuous and integrable function F(s), since continuity implies integrability) on [0, s].

It can be observed that the kernel KIIVðs; zÞ ¼ � 1
G

Hije
�2~kjz=s

s is continuous in �z� and �s� on any triangle,
0 6 s 6 b, 0 6 z 6 s. Therefore one can always guarantee a unique and bounded solution, for any func-
tion continuous d/(x), and by extension, for any kind of continuous input stress function.
Often, analytical procedures to obtain the solution become cumbersome. We can then attempt numerical

methods, by approximating the integral in Eq. (3.13) as a sum of terms using quadrature rules:
EðsÞ ¼ JðsÞ þ
Xn
q¼0

KIIVðs; zqÞEðzqÞwðzqÞ ð3:16Þ
Since we use either z or s as the independent variable for the solution E, we can call s0 = z0(=0), s = sn = zn
(where zn is the end point we chose for z) and sp = s0 + pDz = z0 + pDz, that is, sp = zp. The value of the
kernel KIIVðsp; tqÞ vanishes for tq > sp, as the integration ends at tq 6 sp Therefore, we will have the system
of n + 1 equations (Writing: KIIVðsp; tqÞ ¼ K, q 6 p, J(sp) = Jp, w(zp) = wp and E(sp) = Ep)
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E0 ¼ J 0

Ep ¼ Jp þ
Xp
q¼0

KpqEqwq ðp ¼ 1; 2; . . . ; nÞ
ð3:17Þ
Rearranging terms, transferring terms involving the solution Ep to the left side of (3.17) leaving the non-
homogenous part Jp on the right side, we obtain the following (lower) triangular system of equations:
E0 ¼ J 0Xp�1
q¼0

�KpqwqEq þ ð1� KppwpÞEp ¼ Jp ðp ¼ 1; 2; . . . ; nÞ
ð3:18Þ
The set of equations (3.18) can be written in a matrix form:
½K	fEg ¼ fF g ð3:19Þ

where K is the (n + 1) · (n + 1) matrix of coefficients of the system of equations (3.18), E = (Ep) is the col-
umn matrix of sample solutions, and F = (Fp) is the column matrix of sample values of the non-homoge-
nous part.
Eq. (3.19) yields the function E and subsequently, we can obtain the stress function r(z) from Eq. (3.9).

The great advantage of Volterra equations of the second kind is that such a numerical approximation re-
sults in the coefficient matrix of the linear system of equations so obtained, being a (lower) triangular ma-
trix. This is because of the variable upper limit of integration in the Volterra equation (and therefore, the
kernel K(x,t) = 0 for t > x). A system of linear equations with such a natural triangular coefficient matrix is
easy to solve. This is in sharp contrast to the square system of equations which result from numerical reduc-
tion of the Fredholm integral equation.
Fig. 2. Simulation methodology.



Fig. 3. Simulation result for input stress of form r = Az + B.

Fig. 4. Simulation result for input stress of form r = Az2 + Bz + C.
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3.2. Simulations results

Preliminary simulation results are presented here, to demonstrate the inversion. A numerical reduction
as described in Section 3.1 has been attempted, based on Simpsons�s rule. The trapezoidal rule is used as a
starting procedure at the second iteration. The procedure adopted for simulations is as follows (see Fig. 2):
the applied pre-stress is assumed to be a known function of depth. The forward model is then used to obtain
the non-homogenous term in Eq. (3.13). With this as the input, the (approximate) solution is calculated and
compared with the applied stress. Fig. 3 shows the result for input stress which varies linearly with depth
and Fig. 4 shows the result for a second order variation of stress with depth. It is to be noted that here, the
frequency is effectively sidestepped because throughout, the calculations are in the �s� plane.

3.3. Case of biaxial stress: proposed new approach

We rewrite the set of equations (2.10):
d/3ð1þ3ÞðxÞ ¼ � L0
4Q

Z 1

0

x2bifije
�2xkja2r11ðzÞdz�

L0
4Q

Z 1

0

x2aifije�2xkja2r33ðzÞdz

d/1ð1þ3ÞðxÞ ¼ � L0
4Q

Z 1

0

x2aifije�2xkja2r11ðzÞdz�
L0
4Q

Z 1

0

x2bifije
�2xkja2r33ðzÞdz

ð3:20Þ
Assuming again that d/3(1 + 3)(x) and d/ 1(1 + 3)(x) are measurable and that we can fit continuous func-
tions to them, the inverse problem now, is to solve for r11(z) and r33(z) from the set of equations (3.20).
Adopting the same procedure as in Section (3.1), the set of equations (3.20) can be written as:
F 3ð1þ3ÞðsÞ ¼ G2
s2

E11ðsÞ þ
Z s

0

H 2ije
�2~kjz=s

s3
E11ðzÞdzF ðsÞ þ

G1
s2

E33ðsÞ þ
Z s

0

H 1ije
�2~kjz=s

s3
E33ðzÞdz

F 1ð1þ3ÞðsÞ ¼ G1
s2

E11ðsÞ þ
Z s

0

H 1ije
�2~kjz=s

s3
E11ðzÞdzF ðsÞ þ

G2
s2

E33ðsÞ þ
Z s

0

H 2ije
�2~kjz=s

s3
E33ðzÞdz

ð3:21Þ
where
G1 ¼ aiCije
�2~kj and H 1ij ¼ 2aiCij

~kj;G2 ¼ biCije
�2~kj and H 2ij ¼ 2biCij

~kj and

Cij ¼ � L0
Q
ðpcnÞ2fij as in the previous section: ð3:22Þ
A numerical approximation of integration in the set of equations (3.21) can considerably reduce the com-
plexity in solving for r11(z) and r33(z). To facilitate this, we rewrite (3.21):
s2F 3ð1þ3ÞðsÞ ¼ G2 E11ðsÞ þ
1

G2

Z s

0

H 2ije
�2~kjz=s

s3
E11ðzÞdz

 !
þ G1 E33ðsÞ þ

1

G1

Z s

0

H 1ije
�2~kjz=s

s3
E33ðzÞdz

 !

s2F 1ð1þ3ÞðsÞ ¼ G1 E11ðsÞ þ
1

G1

Z s

0

H 1ije
�2~kjz=s

s3
E11ðzÞdz

 !
þ G2 E33ðsÞ þ

1

G2

Z s

0

H 2ije
�2~kjz=s

s3
E33ðzÞdz

 !

ð3:23Þ

Now the numerical reduction yields:



Fig. 5.

Fig. 6.
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s2F 3ð1þ3Þ ¼ G2K2E11 þ G1K1E33

s2F 1ð1þ3Þ ¼ G1K1E11 þ G2K2E33
ð3:24Þ
Simulation result for biaxial stress of form r = (�A)z2 + Bz along axis 1 and r = Cz + D along axis 2. (A, B, C, D positive.)

Simulation result for biaxial stress of form r = (�A)z2 + Bz along axis 1 and r = Cz2 + Dz along axis 2. (A, B,C, D positive.)
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where F3(1 + 3) and F1(1 + 3) are column matrices containing sample values of F3(1 + 3)(s) and F1(1 + 3)(s)
respectively, E11 and E33 are column matrices containing sample values of E11(s) and E33(s) respectively,
and K1 and K2 are coefficient matrices as defined in Eq. (3.19), for specific values of Hij ¼ H 1ij and
Hij ¼ H 2ij respectively. (3.24) further yields,
G2K2 G1K1

G1K1 G2K2

" #
�

E11

E33

" #
¼

s2F 3ð1þ3Þ

s2F 1ð1þ3Þ

" #
ð3:25Þ
We note that G1K15G2K2 and therefore we can solve (3.25) successfully to obtain unique solutions E11 and
E33, and subsequently, the stress functions r11(z) and r 33(z) from Eq. (3.9).

3.4. Simulations results

Again, present preliminary simulation results are presented for the case of presence of a biaxial stress
state. The numerical procedure adopted and the simulation methodology is same as described in Section
3.2. Fig. 5 shows simulation result for a biaxial stress state where along one axis, we have a quadratic var-
iation of stress with depth and along the other axis we have a linear variation of stress with depth. Fig. 6
shows simulation result for a biaxial stress state where we have a quadratic variation of stress with depth
along both the axes. Again, all calculations are in the �s� plane.
4. Discussion

4.1. Effect on ill-posedness

The complex physical nature behind the propagation of Rayleigh surface waves manifests itself in the
forward model being Fredholm integral equation of the first kind (3.1). This makes the direct inversion
of this equation an ill-posed problem. The inversion method proposed in this paper is based upon the con-
version of this equation into a Volterra integral equation of the second kind (3.13). It is a known fact in
literature (Jerry, 1999) that such equations are less prone to ill-posedness; a mathematical analysis of these
equations will reveal the salutary effect of this process.
In Eq. (3.1) the integration over the sought solution, r(z) is a smoothing process. This is further aided by

the nicely behaved kernel, KIFðx; zÞ. Therefore information regarding the variations in r(z) tends to be sup-
pressed in d/(x), the resultant of the integration. Hence, given a function d/(x), we cannot in general, be
assured of an answer in search for r(z). This is at the root of how ill-posedness manifests in the Fredholm
formulation.
The improvement achieved by the proposed method can be perceived through (3.11). Here, the presence

of an additional term containing E(z) (which in effect, contains all the information of r(z)) outside the inte-
gral operation, ensures the preservation of full information regarding r(z) in F(s). This is how the Volterra
formulation is less prone to ill-posedness.

4.2. The choice of a suitable value for �n�

It must be noted that, apart from the condition that it must be a finite number, the issue of the value
for �n� does not figure up to the point where the conversion of integral equation type is effected. Until
here, its role is only so far as to make the upper limit of integration dependent upon frequency (see
(3.1)–(3.3)) so that a Volterra equation results from a Fredholm equation. But the matrix K which is in-
verted and applied to the function F to obtain the stress function E in (3.19) is dependent on the value of
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�n�. In this matrix �n� appears twice in the denominator, outside and within a negative exponent; hence the
lower the value of �n� the better, so that the matrix K remains numerically invertible. The range of fre-
quencies used is 176 MHz to 17.6 GHz, corresponding to the depths of 1–100 lm, and were investigated
in the simulations. However, this is by-passed during simulations as we are dealing in �s� space, the �wave-
length space�. The wavelength is roughly the penetration depth, so the frequency must be such that the
wavelength offers the penetration we require. The Rayleigh wave is known to vanish (Kline et al.,
1996; Lindgren et al., 1993) beyond approximately 1.2 times its wavelength so the lowest value that
can be chosen for �n� is 1.2. The value of n between 1 and 1.4 were tested and the inversion was found
to be stable.

4.3. Route to the equation of second kind

We could also have arrived at the Volterra equation of the second kind, by an alternative approach. This
would have involved a partial differentiation of F(s) in Eq. (3.5) with respect to �s� and usage of the Leibnitz
formula,
d

dx

Z bðxÞ

aðxÞ
F ðx; yÞdy ¼

Z bðxÞ

aðxÞ

oF ðx; yÞ
ox

dy þ F ðx; bðxÞÞ db
dx

� F ðx; aðxÞÞ da
dx

ð4:1Þ
But the method proposed in this work has its advantages. First, the loss of information due to differenti-
ation (whereby a constant term, if present, vanishes) is prevented. Further, the possible magnification of
errors in F(s) is avoided.

4.4. Discretization procedure

In this work, a method based upon quadrature rules was used to discretize the integral in Eq. (3.13), to
demonstrate the inversion. However, such a procedure is not considered ideal, because of their requirement
of a suitable �starting procedure� and possible propensity to amplification of noise. Self starting block meth-
ods such as the Runge–Kutta method (Delves and Mohammed, 1985) are suggested as basis for an
alternative.
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Appendix A

The power flow �P� occurring in Eq. (2.1) is given by:
P ¼ xq0V 0
2

ð1=V 20Þ þ k2s
2ks

� 2 ðK2=V
2
0Þ þ K4k

2
s

ks þ kl
þ ðK22=V 20Þ þ K24k

2
s

2kl

� 	
With the quantities
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ks �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V 20
� 1
V 2s

� �s
; kl �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V 20
� 1
V 2l

� �s
; K2 ¼

2kskl
ð1=V 20Þ þ k2s

; K4 ¼
2

ð1þ V 20k
2
s Þ
where V0, Vs and Vl, the phase velocities of the Rayleigh, transverse and longitudinal waves respectively in
the unstressed medium. q0 denotes the constant density of the medium before application of the static initial
deformation.
The 15 constants fij, i 2 {1,2,3,4,5}, j 2 {1,2,3} occurring in Eq. (2.4) are:
f11 ¼ ðks=V 0Þ2; f 12 ¼ ðklK2=V 0Þ2; f 12 ¼ 2ksklK2=V 20

f21 ¼ f11; f 22 ¼ K24f21; f 23 ¼ �2K4f21

f31 ¼ �2f 11; f 32 ¼ klK2K4=ks; f 33 ¼ �½K4 þ klK2=ks	f31

f41 ¼ ð1=V 40Þ þ k4s ; f 42 ¼ K22=V
4
0 þ ðksklK2Þ2; f 43 ¼ �2½K2=V 40 þ ðk3sklK4Þ	

f51 ¼ 2f 11; f 52 ¼ klK2K4f51=ks; f 53 ¼ �½klK4=ks þ K2	f51

The constants ai (i 2 {1,2,3,4,5}) appearing in Eq. (2.5) are given by:
a1 ¼
1

3k þ 2l k þ 2l� kð2k þ 6l þ 4mÞ
2l

� �

a2 ¼
1

3k þ 2l k þ 2lþ ðk þ lÞð2k þ 6l þ 4mÞ
l

� �

a3 ¼
1

3k þ 2l k þ 2lþ kðk þ 2m� nÞ
2l

� �

a4 ¼
1

3k þ 2l 3k þ 2l þ m� kð2l � n=2Þ
2l

� �

a5 ¼
1

3k þ 2l k þ l þ m� kðl � n=2Þ
2l

� �
The constants bi appearing in Eq. (2.6) are:
b1 ¼ b2 ¼ a1

b3 ¼
1

3k þ 2l k þ 2l� ðk þ lÞðk þ 2m� nÞ
l

� �

b4 ¼ b5 ¼
1

3k þ 2l m� k � ðk þ lÞn
2l

� �
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